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ABSTRACT

Motivation: Interactions of molecules, such as signaling proteins,
with multiple binding sites and/or multiple sites of post-translational
covalent modification can be modeled using reaction rules. Rules
comprehensively, but implicitly, define the individual chemical
species and reactions that molecular interactions can potentially
generate. Although rules can be automatically processed to define
a biochemical reaction network, the network implied by a set of
rules is often too large to generate completely or to simulate
using conventional procedures. To address this problem, we present
DYNSTOC, a general-purpose tool for simulating rule-based models.
Results: DYNSTOC implements a null-event algorithm for simulating
chemical reactions in a homogenous reaction compartment. The
simulation method does not require that a reaction network be
specified explicitly in advance, but rather takes advantage of the
availability of the reaction rules in a rule-based specification of
a network to determine if a randomly selected set of molecular
components participates in a reaction during a time step. DYNSTOC
reads reaction rules written in the BioNetGen language which is
useful for modeling protein–protein interactions involved in signal
transduction. The method of DYNSTOC is closely related to that of
STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model
specification in terms of BNGL, which extends the range of protein
complexes that can be considered in a model. DYNSTOC enables
the simulation of rule-based models that cannot be simulated by
conventional methods. We demonstrate the ability of DYNSTOC
to simulate models accounting for multisite phosphorylation and
multivalent binding processes that are characterized by large
numbers of reactions.
Availability: DYNSTOC is free for non-commercial use. The C
source code, supporting documentation and example input files are
available at http://public.tgen.org/dynstoc/.
Contact: dynstoc@tgen.org
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Models for biochemical reaction networks are commonly specified
in terms of (i) a list of reactions; (ii) a visual layout of the
reactions in a system or a reaction scheme diagram, which may
be enhanced using annotative iconography (Kitano et al., 2005);
or (iii) a set of ordinary differential equations (ODEs), in which
one equation is included for each possible chemical species in a
network. Such models can also be specified in terms of reaction rules
(Hlavacek et al., 2006), which provide a high-level representation
of the molecular interactions in a system that give rise to individual
reactions and chemical species. Rules are particularly useful when
one wishes to account for molecular substructure and/or site-specific
details of molecular interactions in a model, as illustrated by
the didactic example of Danos (2007). The BioNetGen language
(BNGL) (Blinov et al., 2006; Faeder et al., 2005b, in press) and
the closely related κ-calculus (Danos and Laneve, 2004; Danos
et al., 2007a) are examples of formal languages that have been
developed for precisely specifying models for biochemical systems
in terms of reaction rules. Other related modeling frameworks
include dynamical grammars (Mjolsness and Yosiphon, 2006),
ρbio-calculus (Andrei and Kirchner, 2008), and BlenX (Dematté
et al., 2008). BNGL can be processed by the BioNetGen software
package to generate a reaction network automatically from a
set of BNGL-encoded rules (Blinov et al., 2004; Faeder et al.,
2005a; http://bionetgen.org/). The rule-derived network can then
be simulated using conventional methods that take a reaction
network as input. Rules have been used most commonly to model
signal-transduction systems (Hlavacek et al., 2006), but rules have
been used to model other types of biochemical systems as well
(for example, see Mu et al., 2007).

A set of rules often implies a vast reaction network (Danos et al.,
2007a; Hlavacek et al., 2003, 2006). Deriving a network from such a
set of rules is computationally expensive, in large part because of the
need to routinely solve graph isomorphism problems (Blinov et al.,
2006). Moreover, simulating a model for such a network (if it can
be fully derived) may be impractical with conventional methods.
For example, the computational cost of numerically integrating
ODEs, which is often the most efficient approach for simulating
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a small reaction network, depends non-linearly on N , the number
of ODEs (i.e. the number of chemical species in a network). For
stiff ODEs, the cost of numerical integration typically scales with
N3, and simulating a system for which N is larger than 104–
105 can be prohibitively expensive. The computational cost of
stochastic simulation methods, such as Gillespie’s method and most
subsequent improvements of this method (Gillespie, 2007; Li et al.,
2008), depends on M, the number of reactions in a system. Schulze
(2007) and Slepoy et al. (2008) have recently described stochastic
simulation methods with costs independent of M, but to apply either
of these methods to simulate a rule-based model, one must first
generate a network from rules, which again is costly.

The expense of network generation can be avoided or reduced in
several ways. It can be reduced by terminating network generation
before the full list of potential reactions is obtained and then
simulating the resulting partial network, but the accuracy of results
is uncertain. Network generation is minimized in a principled way
in the on-the-fly method of stochastic simulation (Faeder et al.,
2005a; Gillespie, 2007; Lok and Brent, 2005), in which only
reactions that connect populated and reachable chemical species
are generated. However, on-the-fly simulation of a highly branched
reaction network is significantly slowed by the costs of network
generation (Hlavacek et al., 2006; Yang et al., 2008). Simulation
is sometimes made tractable by methods for reducing the size of
rule-based models (Borisov et al., 2005; Conzelmann et al., 2006).
However, model reduction methods are not generally applicable.
New approaches and software tools are needed for simulation of
large-scale rule-based models, i.e. models of systems described by
rules that imply large numbers of possible chemical species and
reactions.

To address this need, two closely related particle- or agent-based
methods have recently been developed for simulating rule-based
models (Danos et al., 2007b; Yang et al., 2008). In these methods,
a time increment is sampled from an exponential distribution, a rule
is selected from among a weighted list of rules, just as reactions
are sampled in Gillespie’s method, and the selected rule is used
to generate a reaction event (i.e. to select reactants to participate
in a type of reaction defined by the selected rule). Reaction
network generation is avoided. Software implementing the method
of Danos et al. (2007b), called Kappa Factory, is available from
Plectix BioSystems, Inc. (W.Fontana, personal communication).
This software is capable of processing model specifications defined
using κ . Similar general-purpose software implementing the method
of Yang et al. (2008), which extends the method of Danos et al.
(2007b), will be available soon for simulating BNGL-encoded
models.

Here, to further address the need for tools that can simulate
large-scale rule-based models, we present DYNSTOC, an open-
source software that implements an extension of the StochSim
simulation method (Le Novère and Shimizu, 2001; Morton-Firth
and Bray, 1998; Shimizu and Bray, 2001). The method implemented
in StochSim is an agent-based null-event simulation procedure.
In the extension of this procedure, BNGL-encoded reaction rules
play an integral role, and there is no requirement for an a priori
specification of the individual reactions implied by the rules. The
main difference between DYNSTOC and StochSim is in the ability
of DYNSTOC to use a set of rules specified in an expressive
model-specification language to assess whether randomly selected
molecular components are able to participate in a reaction. This

difference greatly expands the range of rule-based models that can
be simulated using the StochSim/DYNSTOC approach.

2 METHOD
The conventions of the model-specification language BNGL, the graphical
foundations of BNGL, the graph-rewriting approach used to interpret BNGL-
encoded reaction rules and the StochSim simulation approach have been
described in detail elsewhere (Blinov et al., 2006; Faeder et al., 2005b, in
press; Hlavacek et al., 2006; Morton-Firth and Bray, 1998; Shimizu and
Bray, 2001). Below, we present a generalization of the StochSim simulation
procedure that incorporates the representational conventions of BNGL. The
StochSim method, a null-event kinetic Monte Carlo (KMC) method, has
sometimes been characterized as an approximate method; it is not. Properly
parameterized, it produces the same statistical distribution of events as a
rejection-free KMC method, such as Gillespie’s method (for an informative
review of null-event and rejection-free KMC methods; see Chatterjee and
Vlachos, 2007).

2.1 Representational conventions
Molecules and molecular complexes are represented by graphs, and
molecular interactions or reaction types are represented by graph-rewriting
rules. Graphs are comprised of nodes, labels associated with nodes
and edges that connect nodes. Nodes represent the reactive molecular
components of a system (e.g. sites and domains of proteins), which are
tracked individually during a simulation. In other words, each node is
associated with a unique index. Components may be associated with
multiple internal states (e.g. a tyrosine residue may be labeled as either
phosphorylated or unphosphorylated). Labels give the names of components
and their internal states. Edges represent bonds between components.
A graph-rewriting rule identifies the necessary and sufficient properties
of reactants in a particular type of reaction, the products that result from
this type of reaction given a set of reactants, and a rate law for reactions
defined by the rule. In the simulation procedure presented here, the rate
law associated with a rule is used to determine the probability that a
reaction occurs within a given fixed time step. We assume that rate laws
associated with rules characterize elementary reactions. In short, we use
standard BNGL to represent molecules and molecular interactions with
the added feature of unique node indices. These indices are used only
for tracking purposes in the simulation procedure described below, and
the tracking index associated with a node does not affect its reactivity in
any way.

2.2 Algorithm
The simulation procedure is comprised of the following steps, which are
repeated until a specified stopping criterion is satisfied.

(1) The current time is incremented by a fixed time step �t, during which
at most one reaction is allowed to occur. Selection of �t is discussed
below in Section 2.5. The value of �t determines the resolution
with which one can determine when events occur. With each time
increment, a reaction is attempted as follows.

(2) A decision is made to select one or two nodes from among the nodes
representing reactive components in the system of interest. [We focus
on reactions that affect the connection(s) and/or internal state(s) of one
or two nodes. It is straightforward to extend the method as presented
here to enable consideration of additional types of reactions, such
as termolecular reactions and synthesis, degradation and transport
reactions.] One node is selected with probability π1, and two nodes
are selected with probability π2 = 1−π1. Selection of π1 is discussed
below in Section 2.4.
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(3) Depending on the outcome of the previous step, either a single node
or a set of two nodes is selected randomly. Each node is selected
with uniform probability. The selection procedure is such that the
same node can be selected twice, but if a node is selected twice, the
following steps are skipped and a null event is said to occur during
the time step.

(4) The selected node or pair of nodes is checked against all reaction
rules specified for the reaction system of interest to determine if
the node or pair of nodes qualifies as a reactant or set of co-
reactants in one or more types of reactions defined by the rules. This
procedure often requires that the local environment of a selected node
be compared against information included in a rule, as described
elsewhere (Blinov et al., 2006), to determine if the environment
is permissive for reaction. For example, if phosphorylation of a
tyrosine depends on co-localization with a kinase, the presence
or absence of the kinase in the local environment of the tyrosine
must be established before one can determine whether the tyrosine
can be phosphorylated. At the end of this step, a list of possible
reactions has been identified, including potential reactants. If no
reaction is possible, the following steps are skipped and a null event
occurs.

(5) Each possible reaction is labeled with an integer index r ∈[
1,...,Mj

]
,

where Mj is the number of possible reactions for iteration j of the
simulation procedure, and a probability pr is calculated for each
reaction. The calculation of reaction probabilities is discussed below
in Section 2.3.

(6) A uniform deviate ρ ∈ (0,1) is generated and used to determine which,
if any, of the Mj possible reactions occurs by finding the smallest
integer R≤Mj that satisfies

∑R
r=1 pr ≥ρ, where pr is the probability

calculated in Step 5 for reaction r. If no value of R satisfies the
inequality, the following step is skipped and a null event occurs.

(7) The graph-rewriting operation of the rule defining the reaction
with index R is applied to the graph(s) representing the reactant(s)
identified in Step 4. The graph-rewriting process has been described
elsewhere (Blinov et al., 2006).

2.3 Calculation of the probability of accepting a
reaction

If a rule indicates that a set of nodes selected in Step 3 of the simulation
procedure (see Section 2.2) can participate in a reaction r (e.g. a rule indicates
that a selected pair of nodes can be connected by an edge or a rule indicates
that a selected single node can change its internal state), the reaction is
accepted with probability pr (Step 6). In general, the value of pr is chosen
such that prPr /�t = vrNAV , where vr is the rate law (inherited from the
governing rule) that gives the molar rate of reaction r (in units such as
Ms−1), NA is Avogadro’s number, V is the volume of the reaction system
and Pr is the probability of selecting a set of nodes that can participate in
reaction r in Step 3 of the simulation procedure. In other words, pr is chosen
such that the expected number of reactants consumed in reaction r per time
step as a result of applying the simulation procedure, which is given by
prPr /�t, matches the corresponding physicochemical turnover rate, which
is given by vrNAV .

Shimizu and Bray (2001) presented a derivation of expressions that can
be used to determine the acceptance probabilities that should be used for
two special types of reactions. Following the approach of Shimizu and Bray
(2001), we can derive similar expressions for other types of reactions. Below,
we give expressions used by DYNSTOC for four types of reactions: (I) state-
change reactions, (II) bimolecular association reactions, (III) dissociation
reactions and (IV) unimolecular association reactions (i.e. reactions in which
two parts of the same molecule or molecular complex are connected). We
will refer to these types of reactions as Types I–IV. Below, we will assume
that these reactions are characterized by mass–action rate laws.

The probability of accepting a state-change reaction r, which we will
denote aspr

I , is given by

pr
I =

{
κr

1 n�t
π1

if π �π1

0 if π >π1
(1)

where π ∈ (0,1) is a uniform deviate generated in Step 2 of the simulation
procedure, κr

1 =kr
I , kr

I is a rate constant (with units such as s−1) that
characterizes the rate at which a component changes state through reaction r,
n is the total number of components (nodes) in the reaction system of interest
and �t is the fixed time step used in the simulation procedure. Recall that
π1 = 1−π2 is the probability of deciding to inspect a single node (versus
a pair of nodes) in Step 2 of the simulation procedure. Thus, according to
Equation (1), Type I reactions are fired only when the decision is made to
select a single node in Step 2 of the simulation procedure.

The probability of accepting a bimolecular association reaction r, which
we will denote as pr

II, is given by

pr
II =

{
0 if π �π1

κr
2 n2�t
2π2

if π >π1
(2)

where π ∈ (0,1) is a uniform deviate, κr
2 =kr

II/(NAV ) and kr
II is a rate

constant (with units such as M−1 s−1) that characterizes the rate at which
two (distinct) components associate through reaction r. The factor of 2
in the denominator of the expression for pr

II arises because there are two
ways (ordered sequences) in which a pair of nodes representing reactive
components can be selected in Step 3 of the simulation procedure.

The probability of accepting a dissociation reaction r, which we will
denote as pr

III, is given by the right-hand side of Equation (1), except with
κr

1 redefined as follows: κr
1 =kr

III/2, where kr
III is a rate constant (with units

such as s−1) that characterizes the rate at which two (distinct) components
dissociate through reaction r. Note that a dissociation reaction can be
uniquely identified in two ways: by selecting either of the two components
that are bound to each other when the choice is made in Step 2 of the
simulation procedure to inspect a single node (π ≤ π1) or by selecting two
mutually bound components when the choice is made to select a pair of
components in Step 2 of the simulation procedure (π > π1). For the latter
case, we arbitrarily set pr

III =0 because it is more efficient to identify reactions
through selection of a single node than a pair of nodes. For the former case,
the factor of 1/2 that multiplies kr

III in the expression for κr
1 above arises

because there are two ways that a single node can be selected to uniquely
identify a dissociation reaction.

The probability of accepting a unimolecular (intramolecular) association
reaction r (e.g. a reaction that connects two ends of a polymer chain to form
a ring), which we will denoted as pr

IV, is given by the right-hand side of
Equation (2), except with κr

2 redefined as follows: κr
2 =kr

IV, where kr
IV is a

rate constant (with units such as s−1) that characterizes the rate at which two
(distinct) components of the same molecule or molecular complex associate
through reaction r. The factor of 2 in the denominator of the expression for
pr

IV arises because there are two ways (ordered sequences) in which a pair
of nodes representing reactive components can be selected. We arbitrarily
set pr

IV =0 when only a single node is inspected in Step 2 of the simulation
procedure, because in general, selection of a single node is insufficient to
uniquely identify a reaction of this type.

The above expressions for acceptance probabilities are provided for
purposes of illustration. One can easily derive additional expressions from the
general relation prPr/�t = vrNAV by following the approach of Shimizu and
Bray (2001). DYNSTOC is capable of handling the most common reaction
types that can be defined using BNGL—see the examples available at the
DYNSTOC web site. An error message is produced if DYNSTOC encounters
a reaction type that it does not recognize.

2.4 Selection of the number of nodes to inspect
In Step 2 of the simulation procedure (see Section 2.2), a decision is made to
inspect either one or two nodes. This decision depends on the value chosen for
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π1 and it determines the types of reactions that are subsequently considered
in the simulation procedure. We will refer to reactions that are considered
after the selection of a single node as Type 1 reactions. Likewise, we will
refer to reactions that are considered after the selection of a pair of nodes as
Type 2 reactions. Let us assume that both Type 1 and Type 2 reactions are
possible; otherwise, we can set π1 = 0 or 1 trivially. The value of π1 may
be set arbitrarily, but for efficiency, the value should be chosen to minimize
null events. Following the approach of Morton-Firth and Bray (1998), we
adopt the strategy of setting algorithmic parameters so that pmax

1 =pmax
2 =1

to minimize null events, where

pmax
i = ni�t

iπi
κmax

i (3)

for i∈[1,2]. In Equation (3), pmax
1 (pmax

2 ) denotes the largest probability
of accepting a Type 1 (2) reaction at any step during a simulation, and

accordingly, κmax
i denotes the maximal value of

∑Mj
r=1κr

i that can be
calculated for a list of reactions identified in Step 4 of the simulation
procedure for any iteration j of the procedure in which a decision is made in
Step 2 to inspect i∈[1,2] nodes. In other words, to minimize the occurrence
of null events, we normalize the largest cumulative probability of selecting
a reaction in Step 6, regardless of whether one or two nodes are inspected in
Step 3.

By setting pmax
1 =pmax

2 and then using Equation (3) and the relation π2 =
1−π1, we find the following expression for the optimal value of π1:

π1 = κmax
1

κmax
1 +κmax

2 n/2
(4)

Note that this expression does not depend on the time step �t. Also note that
the values of κmax

1 and κmax
2 depend on the connectivity of the reaction

network being simulated as well as the factors, such as rate constants,
indicated in Section 2.3.

By introducing the concept of pseudo nodes to set the value of (Morton-
Firth and Bray, 1998), we can ensure that only three random numbers are
generated in the simulation procedure for each time step instead of three or
four. In this approach, π1 is related to the number of pseudo nodes, n0, as
follows: π1 =n0/(n+n0). A suboptimal value of π1 is likely to result from
this procedure because n0 is necessarily an integer. In this case, the optimal
time step (given below) must be reduced. For example, as can be easily
confirmed, if π1 is less than the optimal value given by Equation (4) by a
factor of 1−ε, where 0 < ε < 1, then the optimal time step must be reduced
by the same factor. Note that 1−ε is the relative error introduced by using
an integer pseudo node count that gives a value for π1 less than that given
by Equation (4).

2.5 Selection of the time step
In Gillespie’s method, the time step is sampled from an exponential
distribution and a reaction occurs at each time step. In contrast, DYNSTOC
(as well as StochSim) uses a fixed time step and rejection sampling. In
other words, this approach introduces null events, i.e. time steps in which no
reactions occur. The time step must be carefully chosen. If the time step is
too large, more than one reaction is likely to occur (in the physical system)
during a step and the accuracy of simulation is degraded. If the time step is
too small, accuracy is ensured but at the expense of computational efficiency,
because the cost of null events is wasted. These events do not change the
state of a system.

When is given by Equation (4), we can use pmax
1 =1 and Equation (3)

to find the largest time step �t that can be used in a simulation without
introducing error:

�t = 1

κmax
1 n+κmax

2 n2/2
(5)

It should be noted that, although in this equation does not explicitly depend
on the choice of, Equation (5) is valid only if is given by Equation (4).

DYNSTOC uses Equations (4) and (5) to automatically set the values of
π1 and �t on the basis of estimated values of κmax

1 and κmax
2 , which are

initially obtained from an inspection of the rules to be used in a simulation.
The cumulative probability of accepting a reaction in Step 6 of the simulation
procedure is checked at every iteration of the procedure and if this quantity
is ever found to be greater than 1, DYNSTOC generates an error message
reporting how �t should be manually rescaled to normalize the cumulative
probability.

3 DEMONSTRATION AND VALIDATION
To validate DYNSTOC, we simulated a number of rule-based
models and compared the results against those obtained using
BioNetGen (data not shown). BNGL-encoded specifications of
these models, which can be processed by both DYNSTOC and
BioNetGen, are available at the DYNSTOC web site. Below,
we further validate DYNSTOC by considering two challenging
test-case models that cannot be simulated using BioNetGen
(except in special cases) but can be simulated using DYNSTOC
and independent problem-specific approaches. These test cases
demonstrate the ability of DYNSTOC to simulate multisite
phosphorylation and multivalent binding dynamics.

3.1 Test case I: multisite phosphorylation
We consider an idealized rule-based model for a system in which
autophosphorylation of a receptor tyrosine kinase (RTK) can
generate a multitude of receptor phosphoforms and phosphorylation-
dependent adapter-bound receptor states. The model captures the
interactions of a cytosolic adapter protein with a dimer of RTKs,
which are tightly associated. The adapter protein is comprised of
a Src homology 2 (SH2) domain, and each receptor in a dimer is
comprised of an active catalytic subunit and n autophosphorylation
sites. When a site is phosphorylated, it can bind the SH2 domain
of an adapter protein. The rules of the model are given in pseudo
BNGL as follows:

D(Yij ∼U) ->D(Yij ∼P) (6a)

D(Yij ∼P) ->D(Yij ∼U) (6b)

D(Yij ∼P)+A(SH2) <-> D(Yij ∼P!1).A(SH2!1) (6c)

where ‘D’ denotes a receptor dimer, ‘Yij’ (i = 1,...,n; j = 1,2)
denotes the i-th tyrosine of the j-th receptor in a receptor dimer, ‘U’
denotes an unphosphorylated tyrosine, ‘P’ denotes a phosphorylated
tyrosine, ‘A’ denotes an adapter protein and ‘SH2’ denotes the SH2
domain of an adapter protein. As usual in BNGL, the internal
state label of a molecular component is prefixed by a tilde and a
bond name is prefixed by an exclamation mark. Sharing of a bond
name indicates that two molecular components are connected. The
plus sign on the left-hand side of Equation (6c) indicates that the
molecularity of reactions defined by this rule is two. The absence of a
plus sign on the right-hand side indicates that reverse reactions have
a molecularity of one. Reactions defined by the rules of Equations
(6a) and (6b) also have a molecularity of one. The period on the
right-hand side of Equation (6c) indicates joint membership in a
complex. The above rules represent autophosphorylation of receptor
tyrosines [Equation (6a)], dephosphorylation of receptor tyrosines
via phosphatases not explicitly included in the model [Equation
(6b)], and reversible adapter–receptor binding via SH2 domain
recognition of phosphotyrosine [Equation (6c)]. An illustration of
the model of Equations (6a–c) is available at the DYNSTOC
web site.
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The total number of rules defined in Equations (6a–c) is 6n, and
as can easily be confirmed, the number of chemical species implied
by a rule set, N , is given by

N =1+3n +
(

3n

2

)
=1+ 3n(1+3n)

2
(7)

In this count, one species corresponds to free adapter protein,
A(SH2); 3n species correspond to symmetric complexes and the
rest correspond to asymmetric complexes. Note that a receptor
has 3n possible states because each of its n tyrosines has three
possible states: free and unphosphorylated or phosphorylated and
phosphorylated and bound. Thus, the rules of Equations (6a–c) tend
to imply a large reaction network. However, because each receptor
tyrosine is independent, this network can be characterized by a
number of coupled ODEs derived from the law of mass action that
is much less than N (Borisov et al., 2005; Conzelmann et al., 2006).
As we will see, DYNSTOC is able to simulate Equations (6a–c)
without taking advantage of this simplifying insight, and we can
compare the results against those obtained from the reduced system
of ODEs, which is given below.

For i = 1, ...,n and j = 1,2, we can write the following mass-
action equations:

d[Uij]
dt

=−φi[Uij]+δi[Pij] (8a)

d[Pij]
dt

=φi[Uij]−δi[Pij]−k+i[Pij]+k−i[APij] (8b)

d[APij]
dt

=k+i[Pij][A]−k−i[APij] (8c)

where [Uij] is the concentration of the i-th tyrosine in the j-th
receptor in unphosphorylated form, [Pij] is the concentration of
the i-th tyrosine in the j-th receptor in phosphorylated form and
unbound to adapter, [APij] is the concentration of adapter protein
bound to the i-th tyrosine in the j-th receptor, [A] is the concentration
of free adapter protein, φi is the apparent first-order rate constant for
autophosphorylation of the i-th tyrosine in a receptor (we assume
that autophosphorylation is substrate limited), δi is the apparent first-
order rate constant for dephosphorylation of the i-th tyrosine in a
receptor (we assume that phosphatases are present in excess), k+i
is the rate constant for binding of the adapter protein to the i-th
tyrosine in a receptor, and k−i is the rate constant for dissociation of
the adapter protein from the i-th tyrosine in a receptor. If we assume
that mass is conserved on the time scale of interest, we can also
write the following equation:

[A]=[AT ]−
n∑

j=1

[APij] (9)

where [AT ] is total concentration of adapter protein. Equations (8a–
c) and (9) can be solved using standard numerical methods to obtain
results that can be compared against DYNSTOC simulation results.

3.2 Test case II: multivalent binding
We consider an idealized rule-based model for a system in
which multivalent ligand–receptor binding can generate a multitude
of ligand-induced receptor aggregates. The model captures the

interactions of a soluble trivalent ligand with a mobile cell-surface
bivalent receptor (Yang et al., 2008). The rules of this model are
given in BNGL as follows:

L(r,r,r) + R(1) ->L(r!1,r,r).R(1!1) (10a)

L(r!+,r) + R(1) ->L(r!+,r!1).R(1!1) (10b)

L(r!1).R(1!1) ->L(r) + R(1) (10c)

where ‘L’ denotes a ligand, ‘R’ denotes a receptor, ‘r’ denotes
one of three identical binding sites on a ligand and ‘l’ denotes
one of two identical binding sites on a receptor. The above rules
represent capture of free ligand [Equation (10a)], receptor cross-
linking [Equation (10b)] and ligand–receptor dissociation [Equation
(10c)]. The model is relevant for studying several experimental
systems (Bilgiçer et al., 2007; Posner et al., 2002, 2007; Sil et al.,
2007). An illustration of the model of Equations (10a–c) is available
at the DYNSTOC web site.

A large number of acyclic receptor aggregates can arise through
the interactions represented by the rules of Equations (10a–c), and as
a result, this model, depending on parameter values, can be difficult
or impossible to simulate with conventional approaches (Hlavacek
et al., 2006; Yang et al., 2008). Moreover, correct simulation of
Equations (10a–c) requires enforcement of the ‘+’ constraint of
Equation (10b), which prohibits the formation of cyclic aggregates
(Yang et al., 2008). This type of constraint on molecularity is difficult
and sometimes expensive to enforce (Yang et al., 2008), but the
need to enforce such a constraint is common, especially for rules
that characterize aggregation phenomena.

Here, we will demonstrate how DYNSTOC simulations of
Equations (10a–c) can be used to study the system of Posner et al.
(2002). In particular, we will attempt to make a connection between
cell-surface binding events and the cellular response to these events.
The components of the system of Posner et al. (2002) include RBL
cells, which express FcεRI (the high-affinity cell-surface receptor
for IgE antibody), a model antigen containing three symmetrically
arrayed 2,4-dinitrophenol (DNP) hapten groups, and a bivalent
monoclonal anti-DNP IgE antibody. The trivalent antigen interacts
with anti-DNP IgE–FcεRI complexes on RBL cells, which are long
lived, to stimulate a robust cellular secretory response (Posner et al.,
2002). Aggregation of FcεRI is known to trigger signaling events
that can lead to degranulation (Metzger, 1992). We will assume,
as in earlier work (Dembo and Goldstein, 1978), that the cellular
secretory response to ligand correlates with the number of receptors
in ligand-induced receptor aggregates at steady state. However, we
will assume that receptor dimers are non-stimulatory because the
bivalent analog of the trivalent ligand of Posner et al. (2002) does
not elicit a secretory response. As shown in Figure 1, we can find
values for parameters in the model of Yang et al. (2008), which
we will call the TLBR model, such that ligand-induced receptor
aggregation correlates with the secretory response to ligand. Below,
we will use these parameter values to further investigate cell-surface
ligand–receptor interactions.

3.3 Validation of simulation results
The results of simulations obtained using DYNSTOC and
independent methods can be compared in Figure 2. The simulation
results of Figure 2A were obtained by using DYNSTOC to process
the rules of Equations (6a–c) and by numerical integration of
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Fig. 1. The steady-state fraction of receptors in ligand-induced receptor
aggregates containing three or more receptors, S3, correlates with the
secretory response of RBL cells at different doses of the trivalent ligand
of Posner et al. (2002). Points represent measurements of secretion reported
in Figure 4 of Posner et al. (2002). The line is obtained by using DYNSTOC
to simulate the TLBR model [Equations (10a–c)] with the parameter values
indicated below. There are six parameters in this model: ligand dose; NR, the
number of receptors per cell; V , the volume of extracellular fluid surrounding
a single cell; k+1, the single-site rate constant for ligand–receptor binding
when ligand is freely diffusing; k+2, the single-site rate constant for ligand–
receptor binding when ligand is tethered to the cell surface; and koff , the
single-site rate constant for ligand–receptor dissociation. We set V = 10−9 L,
which corresponds to a cell density of 106 cells/ml; we set koff = 0.01 s−1,
which is consistent with assays of binding of monovalent hapten to anti-DNP
IgE (Erickson et al., 1987; Xu et al., 1998); and we set NR = 300 000/cell,
which is consistent with assays of the number of FcεRI on RBL cells
(Erickson et al., 1987). We systematically varied k+1 and k+2 in a grid search
to find values for which S3 is maximal at the same ligand dose that yields
maximal secretory response. The line shown in this figure is calculated using
k+1 = 3.6 × 105 M−1 s−1 and k+2NR = 9 × 10−4 s−1. To speed calculations,
we considered only 1% of the volume surrounding a cell in simulations.

Equations (8a–c) and (9) for n = 6 [N = 266 086; Equation (7)].
Interestingly, the time courses of Figure 2A indicate that ordered
phosphorylation of tyrosines is possible for purely kinetic reasons.
The simulation results of Figure 2B were obtained by using
DYNSTOC to process the rules of Equations (10a–c) and by using
a problem-specific implementation of the (general) method of Yang
et al. (2008), which we will call the YMFH method, to process
the same rule set. As can be seen, DYNSTOC produces results
that are consistent with those obtained independently. Interestingly,
the time courses of Figure 2B suggest that receptor trimers are
predominantly responsible for the RBL secretory response to the
trivalent ligand of Posner et al. (2002). The results of Figure 2
serve not only to validate DYNSTOC, but also to demonstrate
that DYNSTOC is capable of simulating large-scale rule-based
models.

3.4 Efficiency
Figure 3 illustrates the efficiency of DYNSTOC relative to the
YMFH method. Both methods were used to simulate the rules
of Equations (10a–c) over ranges of model parameter values that
affect the complexity of simulation. Increasing the number of
receptors NR (Fig. 3A) increases the frequency of reactions, and
increasing the dimensionless parameter β = NRk+2/koff (Fig. 3B)
increases the average size of ligand-induced receptor aggregates
at equilibrium (Goldstein and Perelson, 1984). As can be seen,
the computational cost of simulating Equations (10a–c) with

Fig. 2. Validation of DYNSTOC simulation results. (A) Time courses
of tyrosine phosphorylation calculated by using numerical integration to
solve Equations (8a–c) and (9) for n = 6 (dotted lines) and by using
DYNSTOC to simulate the corresponding set of rules given by Equations
(6a–c) (solid lines). Note the transformation of time t (s). The initial
data are [A] = [AT ] = 0.12 µM and [Uij] = 1.2 µM, [Pij] = 0, and [APij] = 0
for i = 1, …, 6 and j = 1, 2. Additional parameters have the following
values: V = 1.4 × 10−12 L (cell volume); k+1 = k+2 = 7.6 × 106 M−1s−1,
k+3 = k+4 = 1.7 × 106 M−1s−1, k+5 = k+6 = 6.7 × 106 M−1s−1; k−i = 0.3 s−1

for i = 1, …, 6; φ1 = φ2 = 0.01s−1, φ3 = φ4 = 0.1s−1, φ5 = φ6 = 0.8s−1;
and δI = 0.01s−1 for i = 1, …, 6. (B) Time courses of ligand-induced
receptor aggregation after the addition of ligand (6 nM) according to
Equations (10a–c). Time courses are calculated by using a problem-specific
implementation of the YMFH method (dotted lines) and DYNSTOC (solid
lines). Parameter values are the same as for Figure 1. Time courses are shown
for aggregates containing 2, 3 and 4 receptors. To speed calculations, we
considered only 1% of the relevant volume in DYNSTOC simulations; we
considered a larger volume in simulations using the YMFH method to reduce
noise. The model/simulation-specification files processed by DYNSTOC
to produce the results shown here (testcase1.bngl and testcase2.bngl) are
available at the DYNSTOC web site.
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Fig. 3. Efficiency of DYNSTOC. We compare DYNSTOC (solid lines) and
a problem-specific implementation of the YMFH method (dotted lines);
these methods are used to simulate Equations (10a–c). (A) Scaling of
computational cost with system size, where size is measured by NR, the
number of cell-surface receptors. Additional parameter values: V = 10−12 L;
k+1 = 1.8 × 105 M−1s−1; k+2N ref

R = 0.03 s−1, where Nref
R = 300;koff = 0.01

s−1; and NL = 4200. (B) Scaling of computational cost with dimensionless
parameter β = NRk+2/koff , which controls the (equilibrium) extent of ligand-
induced receptor aggregation. The value of β was adjusted by varying k+2

while holding NR = 300, and koff = 0.01 s−1 fixed. Additional parameter
values: V = 10−12 L, NL = 4200 and k+1 = 1.8 × 107 M−1s−1. In each panel,
the y-axis indicates the total CPU time per reaction event required to simulate
the kinetics of the TLBR model from time t = 0 s to 1000 s with all ligand
initially free. Parameter values used in simulations are the same as those
used by Yang et al. (2008). See the file tlbr.bngl at the DYNSTOC web site.
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DYNSTOC scales as a function of simulation complexity similarly
to the YMFH method. However, the cost of DYNSTOC simulations
can be orders of magnitude greater. The results of Figure 3 are
not unexpected, because time steps in the method of DYNSTOC
are fixed and must generally be smaller than in the YMFH
method, which involves sampling of time steps from an exponential
distribution, as in the method of Gillespie (2007). It should
be emphasized that DYNSTOC is a general-purpose simulation
tool, whereas the implementation of the YMFH method being
considered here is problem specific. It should also be remembered
that simulation of the rules of Equations (10a–c) is impractical
with conventional methods (Hlavacek et al., 2006; Yang et al.,
2008).

4 CLOSING REMARKS
Languages, such as BNGL, provide a means for the specification
of kinetic models for signal-transduction and other biochemical
systems in terms of rules for molecular interactions. However,
because of combinatorial complexity (Hlavacek et al., 2003, 2006),
the biochemical reaction networks implied by typical rule sets
are large scale. The process of deriving a network from rules is
expensive, and rule-derived networks (if they can be practically
generated from rules) are difficult to simulate using conventional
ODE-based and stochastic simulation approaches. To address this
problem, we have generalized the agent-based simulation method
of StochSim and implemented the generalized method in software
called DYNSTOC, which can interpret BNGL-encoded model
specifications.

The generalized simulation method presented here differs from
the original StochSim method in a number of ways. For example,
model specification and reporting of simulation results are greatly
eased by the ability to use BNGL. However, the main advance is
reformulation of the StochSim method to enable explicit tracking
of the connectivity of molecules in molecular complexes. This
advance is enabled by the use of graphs to represent molecules
and molecular complexes. The generalized method is also capable
of accounting for a richer variety of reaction types, such as
intramolecular association reactions, which, with the exception of
special cases, cannot be considered within the original StochSim
framework.

The results of Figure 3 suggest that the StochSim/DYNSTOC
simulation method is less efficient than the YMFH method. These
results provide motivation for development of general-purpose
software implementing the YMFH method, and DYNSTOC should
be useful for validating such software when available. Although
other simulation methods may be more efficient, DYNSTOC should
still be useful for simulating a wide variety of biochemical systems,
and we find the capabilities of DYNSTOC demonstrated here to be
quite exciting.
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